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Deformation, exhumation, and topography of experimental
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Abstract

We explore the effect of asymmetric erosion and dip angle of the indenter on the internal kinematics, deformation, and exhumation of an
experimental doubly-vergent orogenic wedge during transient and steady-state flux conditions. We calculate displacement fields and derive strain
and exhumation for several erosion and non-erosion cases, using particle image velocimetry (PIV) analysis. We apply calculated displacement
fields to a simple heat equation to explore virtual evolution of thermal structure. Erosion exerts a primary control in the internal kinematics of the
experimental wedge. In non-erosion cases, early-formed fore-shears rotate toward the indenter, such that the shear bands become steeper. This
effect is more pronounced in prowedge erosion cases, where shear bands become very steep and even overturned. Conversely, retrowedge ero-
sion results in back rotation of early-formed fore-shears, and the shear bands evolved to gently dipping structures. Wedge erosion, in combina-
tion with the condition of flux and topographic steady-state, increases density of fore-shears, and controls size, width, and topographic divide
migration. Steeply dipping indenters produce overall gentle particle trajectories, and gently dipping indenters favor steep trajectories. Particle
velocity, with respect to isotherms, increases where erosion is concentrated and near active fore-shears.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The interaction and feedback between tectonics and surface
processes in orogens have been suspected since early studies
of thrust tectonics (Chapple, 1978; Suppe, 1981; Davis
et al., 1983; Dahlen, 1984; Dahlen and Suppe, 1988) and is
currently an extensive topic of research (Beaumont et al.,
1992, 2001; Willett, 1999). Mountain building and erosion
are two competing processes. Mountain building creates to-
pography, and erosion destroys it. Through erosional pro-
cesses, mass can be transported and redistributed at the
Earth’s surface, which modifies the gravitational load and al-
ters the stress field and kinematics within orogens (Dahlen
and Suppe, 1988; Koons, 1990; Willett, 1999).
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Orogenic wedges are defined as masses of rock with wedge
shape underlain by a basal décollement. Wedge mechanics is
comparable to that of a sand or snow wedge being pushed
by a bulldozer (Suppe, 1981). During the cross-sectional
growth of a wedge and once a critical slope or a taper angle
is attained, which is dependent on friction along the basal dé-
collement and the internal rheology, the wedge slides over the
basal décollement with little or no internal deformation.
Therefore, any surface process that alters the critical slope in
the way of removal of material or redistribution of masses
will affect the internal evolution of the wedge. One of these
surface processes, erosion, is reported to play an important
role in orogenic exhumation, deformation, and thermal evolu-
tion (Dahlen and Barr, 1989; Barr and Dahlen, 1989; Willett
et al., 1993; Avouac and Burov, 1996; Willett, 1999; Zeitler
et al., 2001; Willett and Brandon, 2002; Jamieson et al.,
2002; Finlayson et al., 2002; Reiners et al., 2002).
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In orogens, the condition of flux steady-state is achieved
when a balance exist between erosional flux and accretionary
flux (Brandon et al., 1998; Pazzaglia and Brandon, 2001; Wil-
lett and Brandon, 2002). This condition is different to topo-
graphic steady-state (Willett and Brandon, 2002), which
refers to the condition in which all the points of the Earth’s
surface remain at the same elevation with time. The ideal con-
dition of flux steady-state may not be attained in natural sys-
tems, although this condition has been proposed for different
active orogens such as Taiwan (Suppe, 1981), the Southern
Alps of New Zealand (Adams, 1980), and the Olympic Moun-
tains (Brandon et al., 1998; Pazzaglia and Brandon, 2001).

Several numerical models (Koons, 1987; Beaumont et al.,
1992; Willett et al., 1993; Willett, 1999; Willett and Brandon,
2002; Jamieson et al., 2002) have used spatially focused ero-
sion to study the feedback between tectonic and surface pro-
cesses in orogens. Spatially focused erosion, which is similar
to having a climatically wet and a dry side of an orogen due
to prevailing winds, may result in localization of deformation
and exhumation, isotherm advection, and migration of the to-
pographic divide. Similarly, analogue experimental models
have shown that wedge erosion, which has been applied asym-
metrically in some cases, leads to rapid uplift/exhumation
(Koons, 1990), high-grade metamorphic peak profiles (Koons,
1990), fault reactivation (Koyi et al., 2000; Leturmy et al.,
2000), steepening of the faults (Cobbold et al., 1993; Persson
et al., 2004), expansion of the duration of activity on single
faults (Merle and Abidi, 1995; Cobbold et al., 1993; Persson
and Sokoutis, 2002; Persson et al., 2004), and delay in the
propagation of deformation (Hoth et al., 2006). However,
these analogue experiments, except the work of Hoth et al.
(2006), lack precise quantification of the internal displacement
field to derive highly detailed maps of strain and exhumation
and to monitor evolution of an orogen. Furthermore, none of
these previous experiments monitored deformation and exhu-
mation during the transient and steady-state conditions of
flux and topography that represent the latest state of a dynam-
ically coupled orogenic system (Willett and Brandon, 2002),
except the work of Konstantinovskaia and Malavieille (2005)
that imposed a flux steady-state condition with a different ero-
sion rule from the one used in this study.

Quantification of particle trajectories within orogens is es-
sential to understanding deformation and exhumation pro-
cesses in mountain belts. Several studies have found
complexity in the particle trajectories within experimental
and analytical models of orogens (Koons, 1990; Mulugeta
and Koyi, 1992; Stüwe and Barr, 1998), and the thermochro-
nologic implications of those complex trajectories are signifi-
cant when calculating exhumation rates and patterns (Batt and
Brandon, 2002). The questions of how rock moves up to the
surface and how long it resides at a specific structural level
are key to understanding the evolution of orogens, and partic-
ularly doubly-vergent orogenic wedges.

In this paper, we explore the effect of asymmetric erosion
on the internal structure of an experimental doubly-vergent
orogenic wedge during transient and steady-state flux condi-
tions. The doubly-vergent orogenic wedge is represented by
a wedge of non-cohesive, dry Coulomb material, walnut
shells, which has not been used before in experimental model-
ing of tectonic wedges. We test and characterize the frictional
properties of the walnut shells. We use two indenter geome-
tries to compare and evaluate the evolving patterns of defor-
mation and exhumation between models as a function of dip
angle, since indenter dip is proposed to affect deformation
and exhumation patterns in natural orogens such as the Central
Alps (Bonini et al., 1999) and the backbone range of Taiwan
(Yui and Chu, 2002). We calculate the displacement field in
the wedge, from which we derive strain and exhumation pat-
terns, using particle image velocimetry (PIV) analysis. In
our experimental setting, erosion is controlled, and exhuma-
tion, deformation, and topography are unconstrained variables
that evolve in response to the processes taking place within the
wedge and at the surface. Additionally, we coupled the exper-
imentally derived displacement field to a simple heat equation
to analytically explore the virtual thermal evolution of an ero-
sional orogenic wedge.

2. Experimental setup

2.1. Materials

Granular materials, such as sand, are used extensively in
scaled sandbox experiments since they reproduce mechanical
behaviors believed to occur in the earth crust, i.e. distributed
deformation followed by shear localization in narrow zones
during failure process (Lohrman et al., 2003). In our experi-
ment, we decided to use and test crushed dry walnut shells in-
stead of the more widely used sand for two reasons. First,
density of walnut shells is lower than that in sand, allowing
us to increase the height of the deforming layer according to
scaling parameters and better resolve shear zones by PIV. Sec-
ond, walnut shells are less abrasive than sand, which increase
accuracy of the PIV technique by reducing scratches on the
surface of the lateral Plexiglas panel of the experimental appa-
ratus. We later found that our general model evolution and
walnut-shell deformation behavior are consistent with those
described in sand models by Malavieille (1984); Colletta
et al. (1991); Bonini et al (1999), and Persson and Sokoutis
(2002).

The apparatus, a Plexiglasealuminum experimental box
(Fig. 1A), was filled with crushed dry walnut shells of
w0.5 mm diameter, bulk density of 750 kg/m3, friction angle
of 38.5e40.8 � and cohesion of 23 � 13 Pa (Appendix A) to
create a continuous 5 cm thick horizontal layer. The walnut
shell particles were sprinkled into the experimental box from
a fixed height of 13 cm from the base of the model, leveled
and compacted by placing a dead weight of 1.5 kg on top of
the walnut shell layer to guarantee homogeneous initial mate-
rial conditions. This filling and compacting technique was re-
produced in all the experimental runs.

Recent scaled sandbox studies show that location of obser-
vation (i.e. sidewall versus internal view) and width of the
model, especially relatively narrow models, may yield differ-
ent results (Mandl, 1988; Schreurs et al., 2006), and the
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electrostatic effect may be significant. The dimensions of the
experimental box are 78 cm long, 44 cm high, and 8 cm
wide, with a basal dip of 0 � (Fig. 1A). The size of the box
proved large enough so that the lateral frictional effect was
minimized and the lateral trend of structures were nearly con-
stant across the width of the experiment (Fig. 3B). A similar
sandbox width was used in the experimental setting of Kon-
stantinovskaia and Malavieille (2005) and the frictional side-
wall effect was not significant. However, in a strict sense,
our model results are only valid at the sidewall.

A

Prowedge Retrowedge

Basal décollement
Direction of Accretion

No Erosion (Models 1 and 4)

Case 1

Prowedge Retrowedge

Basal décollement
Direction of Accretion

Retrowedge Erosion (Models 2 and 5)

Case 2

Prowedge Retrowedge

Basal décollement
Direction of Accretion

Prowedge Erosion (Models 3 and 6)

Case 3

Total Displacement: 40% ~ 27 cm

Total Displacement: 40% ~ 27 cm

Total Displacement: 40% ~ 27 cm

Removed shells  (5 mm
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of lateral shortening)
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Fig. 1. (A) Experimental setup. Plexiglasealuminum experimental box filled

with a continuous horizontal layer of dry walnut shells. Plexiglas rigid in-

denters with dip angle of 35 � and 70 � were used to deform the horizontal wal-

nut shells layer. (B) Diagram of the experimental setup showing three cases:

case 1, non-erosion; case 2, retrowedge erosion; and case 3, prowedge erosion.

A thin 5 mm layer of walnut shells was removed from either the prowedge or

retrowedge after every 5 mm of lateral displacement. Erosion was initiated

after 25 mm of lateral displacement.
Five centimeter high rigid (Plexiglas) indenters with dip an-
gle of 35 � and 70 � were driven toward the horizontal walnut
shell layer at a displacement rate of approximately 0.1 mm/s.
However, failure envelop of Coulomb materials (e.g., walnut
shells) are independent of strain rate (Davis et al., 1983;
Sonder and England, 1986). Therefore, the rate of displace-
ment is not a fundamental variable in our model. The top of
the basal surface and the indenters were covered with P400
sand paper to guarantee constant basal friction in our Plexi-
glasealuminum experimental box. The internal friction angle
of the walnut shells against the P400 sand paper is 35.6e36.7 �

and the cohesion is 80 � 13 Pa (Appendix A). This experi-
mental setup assumes that the forces are transmitted laterally
into the modeled lithosphere (Peltzer and Tapponnier, 1988;
England and Houseman, 1986) and the orogen is driven by in-
dentation rather than basal pull or drag of the subducting plate
(Malavieille, 1984; Willett et al., 1993; Ellis, 1995; Hoth et al.,
2006). Other limitations of our model include lack of thermal
feedback after localization of exhumation and deformation
(Beaumont et al., 2001; Zeitler et al., 2001; Koons et al.,
2002), absence of isostatic response after thickening or thin-
ning of the crust, lack of ductile strain, abnormally high topo-
graphic slopes when compared to nature, which influences
isotherms distribution (Stüwe and Barr, 1998), and the as-
sumption that erosion processes are dominated by our erosion
rule.

2.2. Scaling

Scaling parameters were calculated using the approach in-
troduced by Hubbert (1937) and successively used by others in
analogue modeling (Ramberg, 1967; Cobbold et al., 1993;
Koyi, 1997; Schellart, 2000; Persson and Sokoutis, 2002;
Lohrman et al., 2003; Persson et al., 2004). In this approach,
both model and nature are dynamically similar. Therefore, co-
hesion is scaled similar to stresses. This relationship is ex-
pressed in the following equation (Schellart, 2000):

Cm

Cn
¼ sm

v

sn
v

¼ rm � Ln� gm

rn � Ln� gn
ð1Þ

where C is cohesion, sv is vertical stress, r is density, L is
length, g is acceleration due to gravity, and the superscript
m and n stand for model and nature, respectively.

The 5 cm thick layer of walnut shells represents 10e15 km
of continental crust, which gives a length model/nature ratio of
3.3 � 10�6. The assumed density of the continental crust is
2700 kg/m3, which gives a density model/nature ratio of
0.27. The gravity ratio is 1, since the experiment was per-
formed in a normal gravity field. Therefore, the calculated
scale factor for vertical stresses is 9.25 � 10�7, which implies
a value of w25 MPa for cohesion of natural crustal rocks and
is representative of the Earth’s upper crust (Goodman, 1988),
given the measured cohesion of 23 Pa for the walnut shells.
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2.3. Procedure

We present six models. The walnut shell layer in models
1e3 and 4e6 were deformed with a 70 � and 35 � dipping in-
denter, respectively. The height of the rigid indenter and the
walnut shell layer were similar in all the experiments. There-
fore, the analogue ‘‘continental crust’’ was able to deform in
the direction of the rigid indenter and over it, forming a dou-
bly-vergent orogenic wedge (Koons, 1990). Two end-member
erosion scenarios were considered in this study (Fig. 1B) in
addition to a non-erosion case for reference. In the first case
(models 1 and 4), erosion was not applied during deformation.
In the second case (models 2 and 5), erosion was concentrated
solely on the indenter’s side of the orogen or retrowedge of
Willett et al. (1993). In the third case (models 3 and 6), erosion
was focused on the flank opposite to the indenter’s side or pro-
wedge of Willett et al. (1993).

Several erosion laws such as constant erosion rate (Dahlen,
1988; Dahlen and Barr, 1989), erosion proportionally linear to
elevation (Dahlen and Suppe, 1988), and stream-power river
incision (Howard, 1994; Whipple and Tucker, 1999) are
used in analytical models of orogens to approximate natural
erosion processes. However, accurate application of sophisti-
cated erosion laws to physical experiments remains a challenge
because it requires human intervention. Despite this limitation,
several erosion rules have been applied to investigate the effect
of erosion on several aspects of the evolution experimental
orogenic wedges. Cobbold et al. (1993) applied horizontal ero-
sion surfaces to topographic highs at different erosion rates.
Persson and Sokoutis (2002) applied constant horizontal ero-
sion surfaces at different erosion rates with material redeposi-
tion. They also conducted one experiment with erosion and
redeposition in the retrowedge. Konstantinovskaia and Mala-
vieille (2005) imposed constant inclined erosion surfaces de-
termined by the taper of a reference non-erosion wedge
without material redeposition. Hoth et al. (2006) used a linear
elevation-dependent erosion rate focused either in the pro-
wedge or retrowedge without material redeposition. We will
later compare our results with those obtained by Persson and
Sokoutis (2002), given the similarities in their boundary con-
ditions with those in our models.

Our erosion rule was spatially constant at a single time step
(Fig. 1B) and allowed the achievement of the conditions of
flux steady-state in the models after w40e50% of the total
lateral displacement (shortening). The particles were removed
with a scraper, using a trajectory approximately parallel to the
natural slope that formed from the topographic divide to the
level of the top of the rigid indenter in either side of the wedge
after each interval of lateral displacement (i.e. if a differential
uplift rate developed across the orogen, the topographic profile
changed accordingly). We applied this erosion rule because we
were interested in both exploring the effect of asymmetric ero-
sion in orogens and allowing the slope of the wedge to evolve
relatively unconstrained and achieve flux steady-state condi-
tions, rather than modeling erosion processes. We measured
and plotted the area of the growing orogen from the digital im-
ages to ensure this condition.
Erosion was initiated after 25 mm of lateral displacement to
allow topographic uplift before the application of the first ero-
sion wave. This erosion technique did not produce any notice-
able disturbance in the particles below the erosion surface.
Each experiment was performed twice to assure reproducibil-
ity. The models were deformed up to w40% of the total length
of the deforming layer, which is equivalent to w27 cm. High-
resolution digital images were taken after every millimeter of
lateral displacement.

2.4. Particle image velocimetry (PIV)

PIV was used in these experiments to quantify the velocity
field and derive strain and exhumation (Fig. 2). PIV is

Particle Image Velocimetry (PIV) analysis

Input 1: Sequence of digital images

Input 2: Selected patches of 16X16 pixels (PIV tracks spatial
brightness variations within images)

Output 1: Displacement field
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Fig. 2. Particle image velocimetry (PIV) method. PIV procedure includes se-

lection of an initial patch in a first image and a search patch in a final image.

Spatial brightness variations within the images are tracked through the image

sequence. PIV output may include: displacement field (shown in this figure),

virtual layering (shown in this figure), strain, and exhumation.
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a technique developed in the field of fluid dynamics to charac-
terize flows in two dimensions (Raffel et al., 1998). PIV has
been applied successfully to study granular mechanical pro-
cesses in scaled experiments (Adam et al., 2002; Adam
et al., 2005; Hoth et al., 2006). In our experiment we used
GeoPIV, which is a MATLAB module developed by White
et al. (2003) that uses the principles of PIV applied to geotech-
nical testing. This non-commercial module uses textural dif-
ferences (i.e. brightness variation) within a series of images
to derive velocity field with subpixel accuracy (<0.1 pixel).
Therefore, under similar boundary conditions, PIV results
may be compared directly to 2-D numerical simulations. In
our model, one pixel is equivalent to w0.15 mm, giving an ac-
curacy of w0.015 mm, which is greater than needed for the
desired quantification considering the grain size of
w0.5 mm. PIV calculates and evaluates textural correlation
between individual patches from a first image and larger
search patches from a second image. The highest correlation
peak denotes the position of the displaced patch and corre-
sponding vector (White et al., 2003). We developed several
modules within GeoPIV to calculate and visualize cumulative
strain and exhumation from the raw PIV velocity field.

3. Results

Models deform as a combination of lateral compaction, lo-
calization of strain in shear bands, and slip along the basal dé-
collement. As reported in previous analogue experiments with
various boundary conditions (Malavieille, 1984; Koons, 1990;
Colletta et al., 1991; Bonini et al., 1999; Persson and Sokoutis,
2002), in the early stages of deformation a ‘‘pop-up’’ structure
develops, bounded by an active back-shear (i.e. structures that
propagates backward toward the indenter or retrowedge side)
and an active fore-shear (i.e. structures that propagate forward
away from the indenter or toward the prowedge side). This
‘‘pop-up’’ structure defines the actively deforming orogenic
wedge (Figs. 1B and 3A) whose internal mechanics have
been described by Koons (1990), based on the original bull-
dozer model of Davis et al. (1983) and Dahlen et al. (1984),
in which the indenter was infinitely high relative to the de-
forming material. As deformation continues, a new fore-shear
develops and the previous one becomes inactive or ‘‘passive’’
and moves back toward the indenter (Malavieille, 1984; Bo-
nini et al., 1999) to form a series of ‘‘thrust’’ imbricates
(Fig. 3B). The previously formed fore-shear is passive in the
sense that the shear zone is not longer active, and it is trans-
lated and back-rotated (Mulugeta and Koyi, 1987, 1992; Liu
et al., 1992; Koyi, 1995) with little or not deformation accord-
ing to the overall velocity field of the deforming wedge.

3.1. Shear band evolution

3.1.1. Active fore-shears
Results are summarized in the diagrams of Figs. 4 and 5.

When comparing models deformed with similar indenter geom-
etries, non-erosion models produce one fewer shear band than
erosion models (Fig. 4). Models deformed with the 35 � dipping
indenter produce more shear bands than those deformed with
the 70 � dipping indenter. Initial dip angle of (active) fore-shears
decreases progressively in the non-erosion models (Fig. 4A and
D), and it also decreases but remains constant after flux steady-
state in the erosion models (Fig. 4B, C, E and F).

To study the relative duration of the activity and the forma-
tion of the fore-shears with respect to the lateral displacement
of the rigid indenter (shortening) between the models, we re-
corded and plotted the amount of shortening between initiation
and extinction of fore-shears (Fig. 5), given that fore-shears
are neither reactivated nor simultaneously active in our
models. We called this variable spacing. The spacing tends
to increases in all the models (Fig. 5). However, in the erosion
models this value becomes relatively constant when the
models reach the condition of flux steady-state (Fig. 5B, C,
E and F). The spacing in models deformed with the 35 � dip-
ping indenter is always less than that observed in the 70 � dip-
ping indenter models. The instant of initiation and extinction
of the shear bands was determined directly from the inspection
of the digital images.

3.1.2. Passive fore-shears
Fore-shears in non-erosion and prowedge erosion models

rotate clockwise toward the indenter (Fig. 6A, C, D and F),

A

B

Fore-shears / Thrust Imbricates
(Topographic Expression)

Passive Marker
Layers

Orogenic wedge

Fore-shear
Back-shear

Prowedge
Side

Retrowedge
Side

Fig. 3. (A) Photograph of the model showing the development of the doubly-

vergent orogenic wedge limited by a fore-shear in the front and a back-shear in

the back. We did not observe significant smearing in the walnut shells. (B)

Photograph during late stages of lateral deformation showing a series of

‘‘thrust’’ imbricates and the slightly arched shape of the strike of the thrusts

due to sidewall frictional effect.
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12 cm of lateral displacement (B,C,E,F). Stabilization of the initial dip angle coincides with the beginning of the condition of flux steady-state. Fore-shear numbers

are shown in chronologic order.
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assuming an observer looking toward the images. Therefore,
fore-shears may evolve to steeply dipping or overturned struc-
tures on the retrowedge side of those models (Fig. 6C and F).
In models deformed with the 70 � dipping indenter, significant
clockwise rotation occurred earlier than in models deformed
with the 35 � dipping indenter. In prowedge erosion models,
fore-shears experience a faster clockwise rotation rate than
that observed in the non-erosion models (Fig. 6A, C, D and F).
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Conversely, fore-shears in retrowedge erosion models expe-
rience an overall counter-clockwise rotation toward the in-
denter (Fig. 6B and E). Therefore, fore-shears evolve to
gently dipping structures in the retrowedge side of those
models. While the overall sense of fore-shear rotations is
counter-clockwise, individual fore-shears may rotate clock-
wise during some deformation increments. For example in
models deformed with the 70 � dipping indenter (Fig. 6B),
fore-shears rotate clockwise in the early stages but switch to
counter-clockwise in the middle stages of the experiment. In
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models deformed with the 35 � dipping indenter (Fig. 6E),
fore-shears consistently rotate counter-clockwise throughout
the experiment.

3.2. Topography: size and divide migration

The size of the orogen increases steadily through time in
the non-erosion models (Figs. 4A and D, 7A and D). The
growth of these reference non-erosion wedges (Fig. 7A and
D) is self-similar (Davis et al., 1983; Dahlen, 1990), in the
sense that the wedges grow in size and keep approximately
constant slopes, although the growth is episodic (Mulugeta
and Koyi, 1992; Koyi, 1995). The slopes in the retrowedge
side of the non-erosion and prowedge erosion models steepen
close to the angle of repose (w39 �), and in the retrowedge
erosion models, erosion keeps slopes at approximately 35 �.
These results are irrespective of the dip of the indenter. The
slopes in the prowedge side of the non-erosion and retrowedge
erosion models are approximately 32 � and 22 � in models de-
formed with the 70 � and 35 � dipping indenters, respectively.

Retrowedge erosion models achieve flux and topographic
steady-state conditions after 10e12 cm of lateral displacement
(Fig. 4B and E). These conditions are illustrated in the rela-
tively constant topographic profiles in Fig. 7B and E. Simi-
larly, prowedge erosion models reach flux steady-state
conditions after 10e12 cm of lateral displacement (Fig. 4C
and F), but topographic steady-state was only partially
achieved due to progressive increase in wedge width
(Fig. 7C and F), confirming that flux and topographic
steady-state are independent of each other (Willett and
Topography: Size and Divide Migration
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Brandon, 2002). Models deformed with the 70 � dipping in-
denter are always taller and narrower than models deformed
with the 35 � dipping indenter.

The main topographic divide in non-erosion and prowedge
erosion models migrates in the direction of the accretionary
flux (Fig. 7A, C, D and F), and in our reference frame this
movement is toward the rigid indenter. Conversely, in retro-
wedge erosion models, the main topographic divide migrates
in the direction opposite to the accretionary flux, moving
away from the rigid indenter. This is true irrespective of the
dip of the rigid indenter. The longest migration of topographic
divide always occurred in the models deformed with the 35 �

dipping indenter.

3.3. Particle trajectories

Displacement fields for each model were calculated for the
intermediate to final stages of lateral displacement after the
condition of flux steady-state was achieved. These displace-
ment fields were used to derive particle trajectories assuming
a fixed indenter (Fig. 8).

Inclinations of particle trajectories in both erosion models
deformed with the 70 � dipping indenter decrease with depth.
Consequently, particle trajectories close to the upper surface of
the models are always the steepest (Fig. 8B and C). Con-
versely, inclinations of particle trajectories in both erosion
models deformed with the 35 � dipping indenter increase
with depth in the prowedge side and decrease with depth to-
ward the retrowedge side (Fig. 8E and F). This transition is il-
lustrated in the vector field of Fig. 8E, and it is less obvious in
Fig. 8F. Overall inclinations of particle trajectories in non-ero-
sion and 70 � dipping indenter models are always gentler than
those developed in erosion and 35 � dipping indenter models,
respectively.

Inclination of the particle trajectories also varies with ero-
sion location. The steepest particle trajectories are found close
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to the surface of the retrowedge side in retrowedge erosion
models and near the surface of the prowedge side in prowedge
erosion models. This trend is illustrated in the vector field of
Fig. 8C and E, and is less obvious in Fig. 8B and F.

3.4. Strain

Cumulative maximum shear strain was calculated for each
erosion case at different stages of lateral displacement. In
Fig. 9, we show strain results after 25 cm of shortening. Cu-
mulative shear strain gamma values range from 0 to >25
(2500%), although the upper boundary of the shear strain color
scale in the figures was fixed to a value of 5 (500%) to enhance
color contrast within models where strain was substantially
less than the maximum shear strain recorded.

Intensity of shear strain and shear band width in models de-
formed with 70 � dipping indenters are larger than those de-
formed with 35 � dipping indenters. All models produce
a progressive increase in width and shear strain intensity of
newly formed fore-shears with increasing lateral displacement.
However, width and shear strain intensity remain steady after
the condition of flux steady-state is reached in both erosion
models.

The top of the rigid indenter in non-erosion and pro-
wedge erosion models has areas of concentrated strain asso-
ciated with a shear plane between the sand paper and the
particles. GeoPIV also imaged particles moving down the
slope at the upper surface of those models (Fig. 9A, C, D
and F).

3.5. Exhumation and thermal modeling

The vertical component of particle motion with respect to
the surface, the exhumation and burial of particles (England
and Molnar, 1990), was calculated using the GeoPIV software.
Positive (exhumation) and negative (burial) values obtained
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from the analyses range from þ40 to �50 mm in all the
models (Fig. 10).

Non-erosion models produce little or no exhumation. Ero-
sion models show domains of high exhumation values where
erosion is applied (Fig. 10). In erosion models, these domains
develop in front of the indenter and migrate progressively in
the direction of accretion. In retrowedge erosion models, this
migration is less pronounced than in prowedge models.

Normalized exhumation rates, which were obtained nor-
malizing the vertical component of the particle motion with re-
spect to the surface by the amount of convergence required for
the uplift, and exhumation/burial history were calculated for
10 PIV-element-patches distributed across the orogen for the
70 � dipping indenter models (Fig. 11). Elements experience
burial followed by exhumation except for particles located
immediately in front of the rigid indenter in the upper section,
where they experience only exhumation (R5 and P5 in
Fig. 11A and B). Elements from retrowedge erosion models
reach the greatest depths and exhumation rates.

Exhumation rate variations from the different elements in
both erosion models correlate with maximum depth variations.
In retrowedge erosion models, maximum exhumation rates
and depths are found in the elements originally located in
the central section of the orogen and progressively decrease to-
ward the elements in the flanks (Fig. 11C). Originally deeper
elements show overall higher exhumation rates. In prowedge
erosion models, maximum exhumation rates and depths are
found in the elements originally located far from the rigid in-
denter and progressively decrease toward the elements close to
the indenter except for element P6 that probably did not reach
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its maximum depth. In these prowedge erosion models, there
is no direct correlation between original depth of the particles
and exhumation rate.

We used exhumation data and the instantaneous-heating-or-
cooling-of-a-semi-infinite-half-space equation (Turcotte and
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with respect to the lateral displacement.
Schubert, 2002), which considers the effect of erosion on sub-
surface temperatures but neglects lateral heat flow, to analyti-
cally calculate the evolution of virtual isotherms (Fig. 8B and
C). This relationship is expressed in the following equation:

T¼ T0þB� yþB� l� erf

(
y�

2�
ffiffiffiffiffiffiffiffiffiffi
k� t
p �

)
ð2Þ

where T is temperature at the given depth, T0 is surface tem-
perature, B is the geothermal gradient, y is depth, l is thickness
of material removed, erf is the error function, k is thermal dif-
fusivity, and t is time. In our model, we assumed an original
geothermal gradient of 25 �C/km, a surface temperature of
25 �C, and a thermal diffusivity of 0.01 cm2/s. Calculations
were performed every 20 frames for a total of 260 frames. Iso-
therms were assumed to be initially horizontal and equally
spaced. Additionally, normalized reset ages of two thermo-
chronometers with closure temperatures of 100 �C and
250 �C, to simulate the accumulation of fission tracks in natu-
ral rocks as they are exhumed, were calculated for both ero-
sion models (Figs. 8B, C, and 12). Modeling shows that in
both erosion cases the thermochronometric ages are young
and converge toward the locus of erosion and become progres-
sively old toward the opposite side. In a natural system, these
results may imply a correlation between high exhumation and
erosion rates.

4. Discussion of results

4.1. (Asymmetric) erosion and steady state

Asymmetric erosion applied to the retrowedge and pro-
wedge side of the experimental orogens produces markedly
different kinematics responses. These differences are obvious
when comparing the evolution of the passive fore-shears
(Figs. 6 and 9) and particle trajectories (Fig. 8). These results
are independent of the dip of the rigid indenter.

In the prowedge erosion models, particle trajectories in the
upper region of the prowedge side have a larger vertical com-
ponent (high vertical displacement values in Fig. 8C and F),
and steep trajectories than in the retrowedge side. Conversely,
in the retrowedge erosion models, particle trajectories in the
upper region of the retrowedge side have a larger vertical com-
ponent than in the prowedge side (Fig. 8B and E). In such a dis-
placement field, passive and relatively linear fore-shears will
rotate clockwise as they are transported up the ramp in the pro-
wedge erosion models and counter-clockwise in the retro-
wedge erosion models. These results imply that vertical
unloading due to concentrated erosion leads to steep particle
trajectories, erosion’s pull effect of Pinter and Brandon
(1997). This effect enhances vertical over lateral extrusion
and affects the sense of rotation of fore-shears, which produces
gently dipping structures in the retrowedge erosion models and
steeply dipping and even overturned structures in the pro-
wedge erosion models. These results suggest that the attitude
of fault-like structures, in the absence of other processes that
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could affect fault-dip, may be used as a first-order approxima-
tion to distinguish between orogens where erosion has been
concentrated in the prowedge or in the retrowedge. Overturn-
ing of beds, faults, and fold axes, with a sense of rotation sim-
ilar to the one observed in our prowedge erosional models,
have been reported in restored profiles of the Olympics Moun-
tains (Tabor and Cady, 1978), which has also been identified as
an area where erosion is concentrated in the prowedge and
coupled to tectonic (Willett, 1999). Similarly, fabric rotation,
resulting from stress changes and asymmetric particle path
across the orogenic divide, has been reported in the erosive
and topographic-steady-state doubly-vergent wedge of Taiwan
(Fisher et al., 2007). In this natural orogen, material is suppos-
edly accreted in the prowedge, buried, and deeply exhumed in
the retrowedge (Willett and Brandon, 2002). Systematic over-
printing relationships and cleavage pattern support this hy-
pothesis (Fisher et al., 2007).

In the erosion models, once the conditions of flux and topo-
graphic steady-state are achieved, the initial dip angle of the
fore-shears and the spacing remain constant. This pattern is
consistent throughout the models and takes place irrespective
of the dip of the rigid indenter. This behavior is probably the
result of a relatively constant cross-sectional distribution of
vertical load after topographic steady-state (Fig. 7). Under
these conditions there are not more perturbations to the grav-
itational stresses (mechanical equilibrium) and the fore-shears
in the wedge form at constant spacing and with similar dips.

Orogenic width growth in our experiments is limited by the
change in the dip of the active fore-shear and erosion in the ret-
rowedge side. In the retrowedge erosion models, after the
conditions of topographic and flux steady-state are reached,
the dip of the active fore-shear remains constant and erosion
limits wedge growth in the retrowedge, fixing the width of the
wedge. In the prowedge erosion models, although the dip of
the active fore-shear is similar to the retrowedge erosion models
after reaching steady-state conditions, the wedge grows slightly
wider because erosion does not prevent material from moving
toward the retrowedge. These results suggest that in our
experiments, after flux steady-state conditions, orogenic width
is fully controlled by erosion or the lack of it. Analytical models
have also shown that erosion, among other variables, controls
orogenic width (Hilley and Strecker, 2004; Whipple and
Meade, 2004).

Topographic-divide migration and size of the orogen is also
partially controlled by erosion. In the non-erosion cases, the
wedge grows without limitations as new material is accreted,
and the topographic divide migrates in the direction of tectonic
accretion. Theoretically, orogenic growth should be limited by
the strength of the ‘‘crust’’ before it collapses under its own
weight (Rey et al., 2001), and the shape of the orogen should
be entirely dictated by wedge mechanics (Chapple, 1978; Da-
vis et al., 1983; Suppe, 1981; Dahlen et al., 1984; Koons,
1990). In the erosion models, despite the fact that we applied
erosion approximately parallel to the natural slope at constant
lateral displacement intervals, our erosion rule may have af-
fected the self-similar growth (Davis et al., 1983; Dahlen,
1984) and produced periods of subcritical growth or
disequilibrium wedge shapes during its evolution (Suppe,
1981; Davis et al., 1983), which may explain variations in
the topographic taper between models. Under these conditions,
the topographic divide in the erosion models always migrated
in the direction of the erosion wave irrespective of the direc-
tion of accretion or convergence, suggesting that erosion plays
a more important role than direction of tectonic accretion dur-
ing orogenic evolution of the experimental wedge. In this con-
text, our results agree with the numerical models of Willett
(1999), in which high erosion rates produced migration of
the topographic divide in the direction of erosion.

In our experiments, both erosion models produced one
more fore-shear than non-erosion cases irrespective of the ero-
sion side, thus reducing the lifetime activity of the fore-shears.
If we were to increase the shortening of the model over the
40% achieved, we would probably see a difference of more
than one fore-shear between erosion and non-erosion cases
based on the trend of Fig. 4. These results disagree with
some of the results reported by Persson and Sokoutis (2002),
in which erosion prolonged the activity of the shear bands in
all cases except the cases with the 15 � and 30 � dipping in-
denter with total erosion producing at least one additional
shear band. Neither of those experiments probably reached to-
pographic and flux steady-state, thus the cross-sectional distri-
bution of vertical loads probably changed over time. Flux and
topographic steady-state in our experiments limited the ex-
pected pattern of increased spacing between shear bands as
the orogen grew (Figs. 4 and 5), thus more shear bands are
generated in our erosion and steady-state models.

4.2. Thermal implications

Overall, the particles move faster through the isotherm in
the side of the orogen where erosion is concentrated, either
prowedge or retrowedge side, moving with a trajectory in-
creasingly normal to the isotherms, as shown in Fig. 8B and
C. However, in the prowedge erosion model, particles near
the active fore-shear in the hanging-wall tend to move faster
through the isotherms than the rest of the wedge. Once the
fore-shear becomes inactive, the particles slow down and re-
main relatively steady at the same structural level as they
are slowly brought to the surface. Then the particles near the
newly formed fore-shear in the hanging-wall speed up similar
to the previous cycle of fore-shear formation. This behavior
explains the young thermochronometric ages located in front
of the wedge (1 in Figs. 8C and 12), where the fore-shear is
active, and not in the central part of the prowedge toward
the topographic divide, where fore-shears are extinct and
deeply exhumed particles are being highly eroded (Fig. 10C
and F). Conversely, in the retrowedge erosion models, particle
velocities with respect to the isotherms in the retrowedge side
do not seem to be directly affected by the active fore-shears.
Instead since the isotherms are advected toward the central
part of the surface of the retrowedge side and particles move
relatively perpendicular to the isotherm at similar velocities,
the youngest thermochronometric ages are found in the central
section of the retrowedge (4 and 5 in Fig. 8B).
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Ages of the two thermochronometers in the retrowedge ero-
sion models tend to converge and become younger toward the
elements 4 and 5 in the retrowedge (Fig. 12). One could inter-
pret this tendency as rapid exhumation, in the absence of ac-
curate particles trajectories. However, exhumation rates in
this region are very similar but the isotherms are deflected to-
ward the surface, producing compressed young ages as parti-
cles pass through the closely spaced isotherms. These results
illustrate the complex relationship between isotherms, particle
position at any given time, and thermochronometric ages in
orogenic wedges. These results suggests that caution is needed
when interpreting exhumation rates and patterns on the basis
of thermochronometry, when particles trajectories are not ver-
tical and isotherms evolve through time. Most thermochrono-
logical studies are based, for simplification, on 1-D vertical
particle trajectories (Stüwe and Barr, 1998), but as shown in
the work of Batt and Brandon (2002) and in this experiment,
particle trajectories involve at least considering lateral (2-D)
motion. We found no direct correlation between surface pat-
terns of deeply exhumed particles and thermochronometric
ages. However, particles that reached maximum depths, expe-
rience the highest exhumation rates, irrespective of their orig-
inal crustal level.

4.3. Control of the dip angle of the indenter

Steeply dipping indenters produce overall gentle trajecto-
ries and relatively narrow orogens, and gently dipping in-
denters favor overall steep trajectories and relatively wide
orogens. A possible explanation of this observation is that
steeply dipping indenters are more effective than gently dip-
ping indenters at accreting material laterally. Shear stresses
at the surface of the indenter (ramp) in the 70 � dipping in-
denter models are insufficient to surpass resistance to sliding,
when compared to the 35 � dipping indenter models.
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Therefore, in models with steeply dipping indenters, material
is effectively transferred horizontally to the front of the in-
denter as deformation progresses, producing overall gentle
particle trajectories and preventing the orogen growth toward
the retrowedge. This interpretation may also explain why the
back-shear of the 70 � dipping indenter models is not along
the ramp of the indenter but away from its tip (Fig. 3A), form-
ing an effective indenter (Persson and Sokoutis, 2002). In con-
trast, in models with gently dipping indenters, material is
efficiently transported up the ramp, producing overall steep
particle trajectories and a wider orogen, since material moves
easily toward the retrowedge. Several experiments have re-
ported similar lateral compaction behavior for models with
ramps dipping �60 � (Bonini et al., 1999; Persson, 2001)
and �30 � (Persson, 2001).

Sandbox experiments (Liu et al., 1992; Marshak and Wil-
kerson, 1992; Persson; 2001) have shown an inverse relation-
ship between the vertical load and number of shear bands
developed due to variations in the force needed to cause move-
ment along the shear bands and in the cohesion of the material
(Mulugeta, 1988). Under the accretion conditions developed in
our experiment, the vertical distribution of load differs greatly
between the two indenter models. This difference may explain
the differences in the total number, spacing, intensity of shear
strain, and width of the shear plane of the fore-shears. The pro-
wedge sides of the models with steeply dipping indenters
(70 �) are progressively taller than the prowedge sides of the
gently dipping indenter models (35 �), thus vertical load in-
creases. Therefore, deformation in the former is propagated to-
ward the front of the indenter primarily in the form of lateral
compaction, with fewer and long-lived fore-shears with highly
sheared and wide shear planes that develop at longer spacing.
Conversely, deformation in the latter is propagated to the front
of the indenter primarily in the form of numerous and short-
lived fore-shears with slightly sheared and narrow shear planes
that develop at shorter spacing.

Results also showed that the initial dip angle of the fore-
shears is shallower in models with steeply dipping indenters
compared to models with gently dipping indenters. According
to Coulomb theory (Davis et al., 1983; Dahlen et al., 1984),
the initial failure plane is located at an angle of �(45�4/2)
with respect to the principal stress axis, where 4 is the angle
of internal friction. Therefore, lowering the dip of the indenter
should increase the inclination of the principal stress axis,
which agrees with the experimental observations.

5. Conclusions

Our experiments were conducted to explore the interaction
between tectonic and surface processes in doubly-vergent oro-
genic wedges, allowing for inherent limitations and
assumptions.

� Asymmetric erosion applied to the experimental doubly-
vergent orogens controls internal kinematics. Prowedge
erosion leads to rapid clockwise rotation of passive fore-
shears, producing steeply dipping and overturned
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structures in the retrowedge side. Retrowedge erosion
leads to counter-clockwise rotation of passive fore-shears,
leading to gently dipping structures in the retrowedge side.
� Erosion applied to either side of our experimental orogen,

in combination with the conditions of flux and topographic
steady-state, modestly increases the total number of fore-
shears, decreases their activity lifetime, and controls
size, width, and migration direction of the topographic
divide.
� Exhumation rates calculated on the basis of simulated

thermochronometry without knowledge of the particles
trajectories and thermal structures may result in overesti-
mated rates.
� Dip of the rigid indenter partially controls particle trajec-

tories and strain patterns. Steeply dipping indenters pro-
duce overall gentle particle trajectories and relatively
few and long-lived fore-shears with highly sheared and
wide shear planes. Gently dipping indenters favor overall
steep trajectories and numerous and short-lived fore-shears
with slightly sheared and narrow shear planes.
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Appendix A. Frictional properties of
the experimental materials

We measured the frictional properties (friction coefficient
and cohesion) of the walnut shells and P400 sand paper, using
the experimental apparatus of Maillot and Koyi (2006) de-
signed to measure friction coefficients below w1000 Pa. We
measured the failure envelops of the experimental materials,
using the peak shear load values. The reader is referred to
Maillot and Koyi (2006), for a detailed description of the ap-
paratus, measurement procedure, and limitations.

The internal friction of the walnut shells and walnut shells
against P400 sand paper were calculated from a linear regres-
sion of the data with error bars (Fig. A1). The walnut shells
have an internal friction of 0.83 � 0.02 (friction angle 38.5e
40.8 �) and cohesion of 23 � 13 Pa (Fig. A1, top), and the
walnut shells against the P400 sand have an internal friction
of 0.73 � 0.01 (friction angle 35.6e36.7 �), and cohesion of
80 � 13 Pa (Fig. A1, bottom).
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